In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate).
نویسندگان
چکیده
For the development of a resorbable gastrointestinal patch, the in vitro degradation of solution-cast films of poly(3-hydroxybutyrate) (PHB), modifications of PHB expected to influence its degradation time, as well a poly(L-lactide) (PLLA) was examined. The molecular weight of pure PHB decreased by one-half after 1 year in buffer solution (pH 7.4, 37 degrees C). Acceleration in molecular weight decrease was observed by blending with atactic PHB, whereas no influence was found with low-molecular weight PHB. Leaching of a water-soluble additive led to a slight acceleration of PHB degradability. In contrast, a deceleration in degradation rate was observed with the addition of a hydrophobic plasticizer. In vitro tests indicated an accelerating effect of pancreatin on PHB degradation, whereas PLLA degradation remained essentially uninfluenced. In comparison to simple hydrolysis, the degradation rate of PHB was accelerated about threefold. From the in vitro results, a PHB/atactic PHB blend was selected for repair of a bowel defect in Wistar rats. A patch film was fabricated by a dipping/leaching method. Twenty-six weeks post-implantation, material remnants were found in only one of four animals. The bowel defects were closed in all cases. It could be assessed that the patch material resists the intestinal secretions for a sufficiently long time but that it finally degrades completely.
منابع مشابه
Characterization and Biocompatibility of Biopolyester Nanofibers
Biodegradable nanofibers are expected to be promising scaffold materials for biomedical engineering, however, biomedical applications require control of the degradation behavior and tissue response of nanofiber scaffolds in vivo. For this purpose, electrospun nanofibers of poly(hydroxyalkanoate)s (PHAs) and poly(lactide)s (PLAs) were subjected to degradation tests in vitro and in vivo. In this ...
متن کاملLiposome and polymer-based nanomaterials for vaccine applications
Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...
متن کاملTransdermal Delivery of Insulin by Biodegradable Chitosan Nanoparticles: Exvivo and In vivo Studies
Insulin-loaded biodegradable chitosan nanoparticle was prepared by the polyelec-trolyte complex formation method. The prepared nanoparticles were in the size of 110 nm and had high entrapment (91.0%) capacity. The transdermal nanoinsulin was characterized by in vivo hypoglycemic effects. Plasma glucose was decreased to the range of 80.34 to 96.74 mg/dl, and insulin levels were in...
متن کاملIn Vitro Release Studies of Enoxaparin in Nanoparticle form and Enterically Coated Tablets Containing Surfactants
In the past decade, many strategies have been developed to enhance oral drug delivery. Different techniques were investigated, amongst those the use of permeation enhancers such surfactants and biodegradable polymers were studied more extensively. Chitosan and its derivatives have been studied as permeation enhancer. The aim of the current study was to develop a nanoparticulate system based on ...
متن کاملApplication of the Taguchi Design for Production of Poly(β-hydroxybutyrate) by Ralstonia eutropha
The Taguchi design of experiments was used to test the relative importance of medium components and environmental factors on poly(β-hydroxybutyrate)(PHB) production by Ralstonia eutropha. The optimum condition was obtained as: fructose concentration, 15 g/L; C/N ratio, 7.4; agitation speed 200 rpm; culture time, 40 h; temperature, 25 ° C; seed age, 15 h. At optimu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 23 13 شماره
صفحات -
تاریخ انتشار 2002